NAME:

Class notes [14.2]

basic counting principle

If event 1 can occur m different ways and event 2 can occur n different ways (after the first has occurred), then the two events can occur mon ways.

→Use a decision chart to compute your answer!

permutation

an arrangement of items in a certain order where items cannot be repeated (such as students sitting in a row of desks.)

The number of permutations of n objects is n!

P(n, r): the number of permutations of n objects taken r at a time.

$$P(n,r) = \frac{n!}{(n-r)!}$$

distinguishable permutation

The number of permutations of n objects of which p are alike, q are alike, and r are alike:

repetitions must be accounted for

be sure to use parentheses around denominator when solving in a calculator!

combination

the order of the items is not a consideration and items cannot be repeated (a combination pizza or a committee of people)

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

independent events do NOT affect each other (rolling dice)

dependent events do affect each other (choosing cards from a deck, no replacement)

Probability

P= thof desired outcomes total # of outcomes

Sample Space: Set of all outcomes

P(A) = probability of event A

$$P(A') = prob.$$
 of event A
not happening
 $P(A) + P(A') = 1$

intersection of two events

 $P(A \cap B)$ same as

 $P(A \text{ and } B) = P(A) \cdot P(B)$

union of two events

 $P(A \cup B) \rightarrow same as P(A or B)$

Standard deck of playing cards:

- •52 cards → 4 suits (spades, hearts, clubs, diamonds)
- Each suit has 13 cards
- Face cards: Jack,

 Aces are low unless stated otherwise (Ace = 1)

→mutually exclusive events cannot happen at the same time

P(A or B) = P(A) + P(B)

→NOT mutually exclusive some objects can satisfy the conditions of both events

P(A or B) = P(A)+P(B)-P(bolh)

conditional probability

reduces the sample space since an event has already occurred

P(A|B) = The probability of "event A" given "event B."